

the quality of the male's bower along with his dancing and vocal prowess determine his success in securing a mate.⁷ In satin bowerbirds, they found that the number of decorations, particularly snail shells and blue feathers, were excellent predictors of the male's mating success.⁸ Other good predictors were the degree of bower symmetry and the density of sticks used to build it.

The bowerbird's colourful and ordered decorative arrangements are attractive not only to other bowerbirds, but to humans as well. Our Creator made and appreciates beauty, so it is hardly surprising that we share a common sense of beauty with various other creatures.

How did bower-building come about?

Evolutionists have proposed many theories for how this behaviour may have developed. However, these frequently contradict each other. The predominant thinking is the *runaway sexual selection hypothesis*, which proposes the rapid and unexpected evolution of specific physical traits in males particularly chosen by the female. Sexual selection is a special form of natural selection whereby preference is shown by one sex (often the females) for individuals of the other sex that exhibit certain traits.

Creationists have no objection to sexual selection in principle, any more than they object to natural selection (NS) in general—NS was discovered by creationists before Darwin. Accordingly, if bower-building behaviour developed in this way, the changes were rapid and based on traits already latent in the population. These are not the sorts of changes that could transform one kind of organism into something

fundamentally different. But, in this case, the question remains whether this elaborate behaviour is a built-in design feature present from the beginning of the created kind (subsequently lost in certain lineages) or arose over time in one or more bowerbird lineages.

As an alternative to the runaway hypothesis, some researchers believe that the bower developed as a replacement for the male bowerbird's plumage ornamentation. This view supposes that an ostentatious bower removes the focus from the male, making him less obvious to predators than if the courtship decoration was displayed on his own feathers.¹⁰

Another hypothesis for the emergence of bower-building is that the bower itself provides protection for the females against unwanted mating.⁵ As mating

occurs in the bower, when a male tries to approach a female and she does not want to mate, she can easily escape before the male comes close.

At most, however, these evolutionary proposals only show how bower-building is useful. They do not explain *how* it is supposed to have evolved by the neo-Darwinian mechanism—selection acting on random changes. Providing an advantage to the species does not mean that something arose by evolution, since a designed (created) feature would also be useful/advantageous, by definition.¹¹ Therefore, one would expect selection to be operating *at present* on a trait, regardless of whether it was designed or evolved. Its usefulness would work to maintain it in the population.

Bower-building is accepted as a heritable trait, but there are no known studies of the particular genes involved. What seems clear, though, is that the female's mate preferences drive the continued genetic expression of this unique characteristic.

Some researchers claim that bower-building behaviour evolved in parallel in the maypole-and avenue-building groups, which is highly improbable. Others say that bower-building behaviour was an ancestral trait of the entire Ptilonorhynchidae family but was then lost in the lineage leading to the catbird genus. 8,10 If so, it still supplies no explanation for how the behaviour arose in the first place. It would be consistent with the idea that bower-building

be consistent with the idea that bower-building was a created feature, programmed into the first ptilonorhynchid population. As environmental selection over time led to adaptation and even new species forming, sexual selection would have been able to help fine-tune the expression of bower-building.

Fossil findings

According to evolutionary dating, the 'earliest' reported bowerbird fossils date from the late Oligocene,

c. 23-26 million years (Ma) ago.3 These fossils, found in northwestern Queensland, were assigned to the family Ptilonorhynchidae because they exhibit the full combination of osteological (bone) features recognized in modern-day bowerbirds. The finds are said to suggest that the ecological requirements of the fossil bowerbirds were consistent with those of their present-day relatives.^{3,12} These requirements include the presence of moist forests, plentiful food supply and building materials, as well as low predator pressure. The fossils supply no evidence that bowerbirds gradually developed their distinctive habits. Nothing in their anatomy or in the environments they occupied suggests they were any less suited to building bowers than their kind today.³ Nor are they in any way substantially different from today's bowerbirds. In short, there is no scientific evidence to show that bowerbirds arose from non-bowerbirds.

Adaptive radiation

The arid region of Australia in which these fossils were found was a lush, forested environment during the post-Flood Ice Age. Rather than being millions of years old, these fossils are from the post-Flood period. Avians did not originate in Australia but instead underwent *adaptive radiation* from the Ark's location following the Flood.¹³ Adaptive radiation means that a population of creatures from one location splits through migration and rapidly diversifies to fill a variety of ecological niches.

An enormous amount of initial genetic potential to vary is needed to allow rapid diversification and even speciation. This original genetic information acts like a reservoir where future generations can access variable genetic options—some more suited to their environmental needs. This creates a type of genetic flexibility, allowing divergence and continued

vigour as a group divides into multiple varieties which rapidly adapt to new conditions. Also, the Ararat mountains caused the small populations to become isolated from each other, which means the varieties don't blend back with each other. Even flying birds don't usually like to fly over mountains. Genetic diversity plus geographic isolation is ideal for rapid variation and even speciation (called *allopatric*, from Greek for 'different fatherland'). Potential future genetic variations were largely, though not entirely, contained within this original created kind.¹⁴

The created kind

"[L]et birds fly above the earth across the expanse of the heavens" (Genesis 1:20). God created perhaps about 200 bird kinds on Day 5 of Creation Week.¹⁵

Since the Flood, adaptive radiation of the original bird kinds has resulted in the wonderful array of birds we have today, including the brainy and beautiful satin bowerbird.

References and notes

- Anon., Bowerbirds, Bush Heritage Australia, bushheritage.org.au, acc. 16 Jun 2025.
- 2. Anon., Satin bowerbird, BirdLife Australia, birdlife.org.au, 1 Nov 2017.
- 3. Ehrlich, P.R. et al., Passerines and songbirds, stanford.edu, 1988.
- 4. Anon., Bowerbirds, encyclopedia.com, 8 Jun 2018.
- Nguyen, J.M.T., The earliest record of bowerbirds (Passeriformes, Ptilonorhynchidae) from the Oligo-Miocene of northern Australia, Alcheringa: An Australasian J. Palaeontology 47:475–483, 2023.
- Wojcieszek, J.M. et al., Theft of bower decorations among male Satin Bowerbirds (*Ptilonorhynchus violaceus*): Why are some decorations more popular than others? *Emu* 106:175–180, 2006.
- Borgia Lab, University of Maryland, Sexual selection in bowerbirds, science.umd.edu/biology/borgialab, acc. 16 Jun 2025.
- 8. Borgia, G., Sexual selection in bowerbirds. *Scientific American* **254**:92–101, 1986.
- Kusmierski, R. et al., Molecular information on bowerbird phylogeny and the evolution of exaggerated male characteristics, J. Evol. Biol. 6(5):737–752, 1993.
- Ericson, P.G.P. et al., Parallel evolution of bower-building behavior in two groups of bowerbirds suggested by phylogenomics, Systematic Biology 69(5):820–829, 2020.
- Doyle, S., Does biological advantage imply biological origin? J. Creation 26(1):10–12, 2012; creation.com/biological-advantage.
- Moyle, R.G. et al., Tectonic collision and uplift of Wallacea triggered the global songbird radiation, Nature Communications 7:12709, 2016.
- 13. Lightner, J.K., Towards a creationary view of why speciation occurs, *J. Creation* **30**(1):70–75, 2016; creation.com/why-speciation-occurs.
- Consider, e.g., loss of information by mutation, such as likely happened in the flightless cormorant species.
- Lightner, J.K, An initial estimate of avian Ark kinds, Answers Research J. 6:409–466, 2013.

Julia Rossi B.V.Sc. (Hons)

Julia Rossi (a pen name) graduated in Veterinary Science at the University of Queensland. She worked in private veterinary practice for fifteen years before becoming a mother. She has also worked in the education industry and is currently home-schooling her two children. For more: creation.com/julia-rossi.